

OUTLINE-

UNIT :- I

Operations on process

Process creation

Process termination

Interprocess communication

Shared memory ,Producer-Consumer problem
Buffering

- . - e *’:—: N i-‘\.:,';;‘
Operations on Processes

he processes in the system can execute
concurrently, and they must be created and
deleted dynamically. Thus, the operating system
must provide a mechanism (or facility) for process
creation and termination.

* Other kinds of operations on processes include
Deletion, Suspension, Resumption, Cloning, Inter-

rocess Communication and Synchronization

Process Creation

During the course of execution, a process may create
several new processes.

The creating process is called a parent process, and the
new processes are called the chiildren of that process. Each
of these new processes may in turn create other processes,
forming a tree of processes.

Most operating systems (including UNIX, Linux, and
Windows) identify processes according to a unique process
identifier (or pid), which is typically an integer number.

The pid provides a unique value for each process in the
system, and it can be used as an index to access various
attributes of a process within the kernel.

% &

4 On tvpical UNIX svstems the process scheduler 1s termed sched, and

1s given PID O. The hirst thing 1t does at svstem startup tame 1s to
launch mit, which gives that process PID 1.
o

4. Imit then launches all syvstem daemons and user logins, and becomes

the ulumate parent of all other processes.

ot N -~ -
o - _“’_'_ .
. — A \ - ’ '.\ P = ’
\WI‘ \\‘—// \M—/ \k‘
‘ A typical process tree for a Linux system
l\\p:f = 92238 / \p::; = 9204/:‘ pid = 4005
e — Tt g

In general, when a process creates a child process, that child process
will need certain resources (CPU time, memory, files, 1/O devices) to
accomplish its task.

A child process may be able to obtain its resources directly from the
operating system, or it may be constrained to a subset of the
resources of the parent process.

The parent may have to partition its resources among its children, or
it may be able to share some resources (such as memory or files)
among several of its children.

Restricting a child process to a subset of the parent’s resources
prevents any process from overloading the system by creating too
many child processes.

In addition to supplying various physical and logical resources, the
parent process may pass along initialization data (input) to the child
process.

There are two options for the parent process after creating the child:

Wait for the child process to terminate before proceeding. The parent makes a
wait() system call, for either a specific child or for any child, which causes the
parent process to block until the wait() returns. UNIX shells normally wait for
their children to complete before issuing a new prompt.

Run concurrently with the child, continuing to process without waiting. This is
the operation seen when a UNIX shell runs a process as a background task. It
is also possible for the parent to run for a while, and then wait for the child
later, which might occur in a sort of a parallel processing operation. (E.g. the
parent may fork off a number of children without waiting for any of them,
then do a little work of its own, and then wait for the children.)

#* Two possibilities for the address space of the child relative to the parent:

The child may be an exact duplicate of the parent, sharing the same program
and data segments in memory. Each will have their own PCB, including
program counter, registers, and PID. This is the behavior of the fork in UNIX.

The child process may have a new program loaded into its address space, with
all new code and data segments. This is the behavior of the spawn system calls
in Windows. UNIX systems implement this as a second step, using the exec
system call.

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

pid t pid;

/* fork a child process */

pid = fork();

if (pid < 0) { /* error occurred «/
fprintf(stderr, "Fork Failed");

return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

else { /+= parent process */
/* parent will wait for the child to complete =/

wait (NULL);

printf("Child Complete™);

}

return O;

SN
I
)

N

P
(o)
\

1
(e)

The figure shows the fork and exec
process on a UNIX system.

The fork system call returns the PID
of the processes.

It returns a zero to the child process
and a non-zero child PID to the
parent, so the return value indicates
which process is which.

Process IDs can be looked up any
time for the current process or its
direct parent using the getpid() and
getppid() system calls respectively.

parent (pvd > Q) ‘/’—\

i —_GETRS

> wait{) »—————» parent resumes

\&q\/m‘j——q/ ext())
chilkd (pid = 0) RN SN L

#include <=stdio.h>
#include —<windows.bh> "
The figure shows the more complicated

int =ain(VOID)

{ process for Windows, which must

STARTUPINFO =i; ; y N

FROCERE TRPORATION . 4 5 provide all of the parameter information
e e it o for the new process as part of the forking

si.cb = gizeof(si);
ZeroMemory (Zpi, sizeof(pi)): Proccocss.

/* create child process </

if (!CreateProcess(NULL, /+ use command line =/
T"CA\NWWINDOWS\ \systen32\\mspaint . exe™, S+ command «f
NULL, /+ don’t inherit process handle =/
NULL, /+* don’t inherit thread handlie «/
FALSE, /+» disable handle inheritance =/
C, /* no creation flags =/
NULL, /+ use parent’s environment block =/
NULL, /+* use parent’s existing directory =/
&=s3
&pid)

{
fprintf(stderr, "Create Prcoccess Failed™);

return -1;
}
/* parent will wait for the child Tto complete =/
WaitForSingleObject(pi.bhProceas, INFINITE):;
printf("Child Complete™);

/= close handles =/

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

Creating a Separate Process via Windows API

Process Termination

»~ A process terminates when it finishes executing its final statement

and asks the operating system to delete it by using the exit()
system call.

» All the resources of the process—including physical and virtual
memory, open files, and /O buffers—are deallocated by the
operating system.

» A process can cause the termination of another process via an
appropriate system call. Such system calls are usually mvoked
only by the parent of the process that is to be terminated. A parent
needs to know the identities of its children if it i1s to terminate
them.

» A Parent may terminate the execution of one of its children for a

variety of reasons, such as these:

1.

!J

W

The child has exceeded its usage of some of the resources that it
has been allocated. (To determine whether this has occurred,
the parent must have a mechanism to inspect the state of its

children.)
The task assigned to the child is no longer required.

The parent is exiting, and the operating system does not allow a
child to continue if its parent terminates.

Some systems do not allow a child to exist if its parent has
terminated. In such systems, if a process terminates (either
normally or abnormally), then all its children must also be
terminated. This phenomenon, referred to as cascading
termination, is normally initiated by the operating system.

When a process terminates, all of its system resources are freed up,
open files flushed and closed, etc.

The process termination status and execution times are returned to
the parent if the parent is waiting for the child to terminate, or
eventually returned to init if the process becomes an orphan.

A process that has terminated, but whose parent has not yet called
wait(), is known as a zombie process.

If a parent did not invoke wait() and instead terminated, thereby
leaving its child processes as orphans. Linux and UNIX address this
scenario by assigning the init process as the new parent to orphan
processes.

The init process periodically invokes wait(), thereby allowing the exit
status of any orphaned process to be collected and releasing the
orphan’s process identifier and process-table entry.

Processes executing concurrently in the operating

system may be either independent processes or
cooperating processes.

> A process is independent i/ it cannot affect or be
affected by the other processes executing in the system.
Any process that does not share data with any other
process is independent.

» A process is cooperaling if it can affect or be affected
by the other processes executing in the system. Clearly,
any process that shares data with other processes is a

cooperaling process.

There are several reasons for providing an environment that allows
process cooperation:

® Information Sharing - There may be several processes which
need access to the same file. (e.g. pipelines.)

@ Computation speedup - Often a solution to a problem can be
solved faster if the problem can be broken down into sub-tasks to
be solved simultaneously (particularly when multiple processors
are involved.)

Modularity - The most efficient architecture may be to break a
system down into cooperating modules. (E.g. databases with a
client-server architecture.)

@ Convenience - Even a single user may be multi-tasking, such as
editing, compiling, printing, and running the same code in
different windows.

Cooperating processes require some type of inter-process communication,
which is most commonly one of two types: Message Passmg systems (a) or
Shared Memory systems(b)

Message Passing requires
system calls for every message
transfer, and is therefore slower,
but it is simpler to set up and
works well across multiple
computers.

Message passing is generally
preferable when the amount
and/or frequency of data
transfers is small, or when
multiple computers are
involved.

process A

—_—

process B

COsE
kemel

(a)

process A

]

shared memory

process B

]

kemel

(b)

Shared Memory is faster once it is set up, because no system calls are
required and access occurs at normal memory speeds. However it is more
complicated to set up, and doesn't work as well across multiple computers.
Shared memory is generally preferable when large amounts of information
must be shared quickly on the same computer.

Shared Memory Systems

. Interprocess communication using shared memory requires
communicating processes to establish a region of shared memory.

. Typically, a shared-memory region resides in the address space of the
process creating the shared-memory segment.

"= Other processes that wish to communicate using this shared-memory
segment must attach it to their address space.

"= Shared memory requires that two or more processes agree to remove
the restriction of preventing one process accessing another processes
memory.

"= They can then exchange information by reading and writing data in
the shared areas. The form of the data and the location are
determined by these processes and are not under the operating

system’s control. The processes are also responsible for ensuring that
they are not writing to the same location simultaneously.

Producer-Consumer Examplie Using Shared Memory

=9 Producer-Consumer problem is a common paradigm for cooperating
processes in which one process is producing data and another process

is consuming the data.

=®» The producer—consumer problem provides a useful metaphor for the
client—server paradigm. A server is thought as a producer and a client
as a consumer.

=» One solution to the producer—consumer problem uses shared
memory. To allow producer and consumer processes to run
concurrently, we must have available a buffer of items that can be
filled by the producer and emptied by the consumer.

=®» This buffer will reside in a region of memory that is shared by the
producer and consumer processes. A producer can produce one item
while the consumer is consuming another item. The producer and
consumer must be synchronized, so that the consumer does not try to
consume an item that has not yet been produced.

