

OUTLINE-

UNIT :- lll

Operating System

Deadlock concept, Condition
Avoidance,prevention
Detection and Recovery

A\ ,)rur*' S ' request the resources,
Tr2 ru~ burces are not available at
rrmr fime, so the process enter
into the waiting state. The
r'e.queshng resources are held by
another waiting process, both are

in waiting state, this situation is
cenitd ¥ he

W aiVrwy Woasatavg

o L

Poess Bae L e
= m B

Conditions for Deadlock

fff " NO PREEMPTION

4. CIRCUIL AR WAIT

Deadlock Avoidence

2. @anﬁer s Algorithm
3.Resource _Allocation Graph

5 efmw

e 1S one where: = —

- ~
D ———
- eng—
- o e
5 >

ST IS 1ot d deadlt

s some sequence by which all’

6e satisfied.

[a00 déac[&)c@ we try to make only those
; S;tzons that will take you from one safe
state to another. We avoid transitions to
unsafe state (a state that is not deadlocked,
and is not safe)

———
—

Deadlock Unsate

L g
ot - o Bt

it /"fl test is made, cﬁec.{to see if after
eguest is satisfied, there is a (atleast onel)
Zile Qf mowves that can satisfy all the

| st; te. the new state is safe. If so,
-*;&‘t;.s the request, else maRe the request

wdait.

g ve a resource allocation
SYSELpI t/i only one inatance of each
proces: S L varient of the resource
-~}» llocation graph can be used for

= d’ead'[oc&avozdknce

—— St /

-

—

= — : i
; — e X i
——] R3 | \i R4 r/

Resource Allocation Graph

Deadlock Prevention
———

IPTyererice o avoidarice 1S tHAL fiere, the
SYB LT iomi-selfsvssbuildsizissiicloar o asy thait -

T i e 110 deadlocks.

| —

Tfiis may however be even more conservative
than deadlock avoidance strateqgy.

CIRCULAR WATT: e ensure
that circular wailt must not
happened if we apply a simple
sofution, 1.e., numbering all the
resources types and each process
YEGUE ST YESONITES IR AN INCrea Qg
order q}"e numeration

e can demny this condition
by simpie protocol te.,
“convert the all non-sharable
resources to sharable
resources .

NO PREEMPTION :To ensure

that this condition does not
fiold, we use the following
protocol : we preempt the
desired resources from the
waiting process and allocate
them to the requesting process.

HOLD AND WAIT: e
can demy this condition with
Sfollowing two protocols :

"A process request the
resources only when the
process has none”.

» “Each process to request and

be allocated all its resources
before it begins execution”,

Deadlock Detection

S el
IPPrPElivyieclhianism of deadlocks for singlesiiistaiice:
Of rZsotiiez t_ype is difjereiit. We CAaii détect the dead

locks :;_yuy I OT YT APID DT " Stiigle tiistarce resource ™

-

e ididetect siryg detection a[go7 ithm for multiple
IR ICCS, O)f T esource type.

S w-xi, LE INSTANCE OF RESOURCE TYPE -

ng[e iristarice Of resource t_ype redadris, tfe 5:)15te7n

=

-r

Conszstzng of only one resource for one type. Ve can

detect this type of deadlocks with the help of wait
Sfor graph.

Pl P3 R4 P2

P
-— — -
——

e - Wait for graph
R S

-
— -
-

—
-
—

A system i1s in deadlock state , if and only if the wait for graph
contains cycles. So we can detect the deadlocks with cycles. In the
figure there is 2 cycles one is P1 to P2 to P11, second one P2 to P3 to P2
so the system consisting of deadlocks.

et

12t flde or this type, that i “deadlock detection
:t’r . This algorithm [ooRs [1Re ‘BankKer's
aIgorztﬁm and it employees several data
structures that are similar to those used in the

Banker's algorithim.

Deadlock Recovery

- | — —‘
R E=3

: ** PROCESS TERMINATION

3 RESOURCE PREEMPIION

